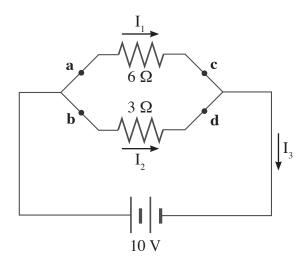

DC Circuits Practice Items

The diagram below pertains to questions 1-6.

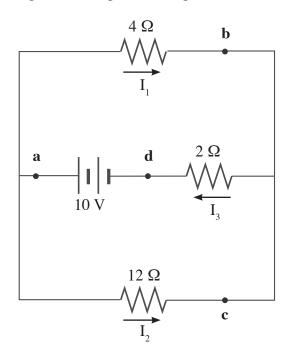


- 1. In what manner does current flow through the circuit?
 - A. clockwise
 - B. counter-clockwise
 - **C.** there is no current
 - **D.** alternating current

- 2. What is the value of the current at point a?
 - **A.** 0 A
 - **B.** 2.0 A
 - **C.** 5.0 A
 - **D.** 8.3 A

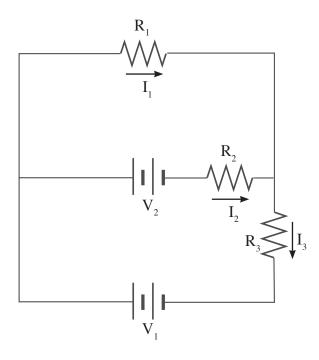
- 3. What is the value of the current at point b?
 - **A.** 0 A
 - **B.** 2.0 A
 - **C.** 5.0 A
 - **D.** 8.3 A
- **4.** What is the potential difference between points **b** and **c**?
 - $\mathbf{A.} 6 \, \mathbf{V}$
 - **B.** 2 V
 - **C.** 6 V
 - **D.** 10 V
- 5. What is the potential difference between points c and a?
 - $\mathbf{A.} 10 \text{ V}$
 - B. -2 V
 - **C.** 2 V
 - **D.** 10 V
- **6.** If the two resistors in the circuit are heating elements submerged in 0.5 liters of water, approximately how long would it take to raise the temperature 1 °C?
 - A. 25 seconds
 - **B.** 0.5 seconds
 - **C.** almost two minutes
 - **D.** about two hours

The diagram below pertains to questions 7 - 12.

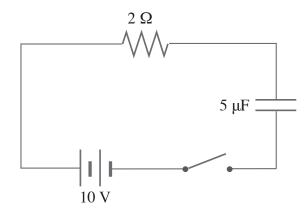


- 7. In the circuit pictured above, what is the potential difference between points **b** and **c**?
 - $\mathbf{A.} 10 \text{ V}$
 - **B.** -3.3 V
 - **C.** 3.3 V
 - **D.** 10 V

- **8.** What is the value of I_3 ?
 - **A.** 1.1 A
 - **B.** 3.3 A
 - **C.** 5 A
 - **D.** 20 A


- **9.** What is the value of I_2 ?
 - **A.** 1.1 A
 - **B.** 3.3 A
 - **C.** 5 A
 - **D.** 20 A
- **10.** What is the value of the power consumption of the entire circuit?
 - **A.** 2.0 W
 - **B.** 10 W
 - C. 20 W
 - **D.** 50 W
- 11. Assuming the power supply remained unchanged in delivering 10V to the external circuit, if the wire were cut at point b, which of the following would occur?
 - **A.** I_1 would increase
 - **B.** I₁ would decrease
 - C. I₂ would increase
 - **D.** I_3 would decrease
- **12.** Which of the following statements is **untrue**?
 - **A.** I_2 is twice the value of I_1
 - **B.** $I_1 + I_2 = I_3$
 - C. The power consumption of the 6 Ω resistor is equal to the power consumption of the 3 Ω resistor.
 - **D.** all are true

The diagram below pertains to questions 13 - 15.


- 13. What is the value of I_3 ?
 - **A.** 0.63 A
 - **B.** 2.0 A
 - **C.** 3.3 A
 - **D.** 8.3 A
- 14. What is the value of the power consumed by the 12Ω resistor?
 - **A.** 6 W
 - **B.** 3 W
 - **C.** 72 W
 - **D.** 25/3 W
- **15.** Which of the following statements is **untrue**?
 - **A.** The potential difference between points b and c is zero.
 - **B.** I_1 is greater than I_2 .
 - **C.** The potential difference between points b and d is 10 V.
 - **D.** All are true.

The diagram below pertains to questions 16 - 17.

- **16.** Which of the following expressions is incorrect?
 - **A.** $V_1 I_1 R_1 I_3 R_3 = 0$
 - **B.** $V_1 V_2 I_2 R_2 I_3 R_3 = 0$
 - $\mathbf{C}_{\bullet} \quad \mathbf{I}_{1} + \mathbf{I}_{2} = \mathbf{I}_{3}$
 - **D.** all are correct
- 17. If instead of the voltage source, V₂, a fully charged capacitor were present at that same position in the circuit, which of the following would occur?
 - **A.** I_1 would equal I_3 .
 - **B.** The rest of the circuit would attain a net positive charge.
 - C. I_1 would be greater than I_3 .
 - **D.** The voltage drop across the capacitor would be equal and opposite to V_1 .

The diagram below pertains to questions 18 - 20.

- **18.** In the RC circuit above, what is the maximum rate of power consumption by the resistor?
 - **A.** 5 W
 - **B.** 25 W
 - **C.** 50 W
 - **D.** 100 W
- **19.** When the capacitor has been fully charged, how much charge will it hold?
 - **A.** $50 \mu C$
 - **B.** 50 mC
 - **C.** 2.0 C
 - **D.** $2.0 \times 10^6 \,\mathrm{C}$
- **20.** Which of the following statements predicts the behavior of the circuit?
 - **A.** Immediately after the switch has been closed, the potential drop will be entirely across the resistor.
 - **B.** After the capacitor has been fully charged, the potential drop will be entirely across the capacitor.
 - **C.** Employing a dielectric within the capacitor will increase the amount of charge stored in the fully charged capacitor.
 - **D.** all of the above

© 2020 Wisebridge Learning Systems LLC. Some rights reserved. This work is published under a Creative Commons Attribution Non-Commercial Share Alike License.

www.integrated-mcat.com

