
Waves
A wave is a disturbance traveling through a medium.  When we speak of wave motion, we
are not speaking of matter in motion as we do in kinematics; we are speaking of the motion
of energy. 

To get a sense of how, as a wave, energy propagates through a medium, we shall begin our
discussion with wave motion on the surface of a body of wa t e r.  Eve ryone is familiar with the
c i r c u l a r, widening ripples that appear upon a pool of water into which a pebble has been
dropped.  The pebble collides with the surface of the wa t e r, pushing the water dow n ward.  The
water is not compressed, howeve r, so immediately around where the pebble has fallen, a cir-
cular wall of water rises up to make room for the water that was pushed dow n ward.  When our
p e bble was falling, it possessed an amount of  kinetic energy, some of which has now been
t ra n s fo rmed into the potential energy of lifted fluid.  But it doesn't stop there.  The lifted fluid
itself then fa l l s, and when it does, it falls below the level of the original surface of the pool.
This lifts water again  to make room both inside and outside of of the perimeter of what just
fell.  The wave is propagating.  The water lifted outside fa l l s, causing more water to be lifted
b eyond it.  The water lifted inside, where the pebble originally fell,  falls too, causing another
ripple to begin.  Water in the spot where the pebble originally fell thus oscillates up and dow n ,
sending ripples outward, one after the other, decreasing in energy.  From above, it looks as
though the water itself is moving outward, but it is energy moving outward.  The water mole-
cules in fact move in small circles, as successive waves pass across the surface of the pool.

The type of wave we are discussing above is a harmonic wave, which means that the
wave form repeats itself with successive ripples.  This is due to the oscillatory nature of the
portion of water into which the pebble was dropped.  A wave also can consist of a single
pulse, which does not repeat itself.  This type of wave called a traveling wave.

Traveling waves: transverse and longitudinal
Waves move across the surface of a pool of water as successive disturbances, and the
molecules of water oscillate in a circular manner, at times perpendicular and at times paral-
lel to the direction of wave motion.  Waves in which the particles of the medium move in a
direction purely perpendicular to wave velocity are called transverse waves.  A transverse
traveling wave is pictured below left.  A single pulse, produced on a length of rope with one
quick shake, moves through the medium.  As the disturbance approaches a given segment
of rope, that segment rises up, and as it leaves, the segment falls back down.   At bottom
right, however, is pictured a longitudinal traveling wave, such as might be produced in a
stretched "slinky".  Here the motion of the medium is parallel to wave velocity.  As the dis-
turbance approaches a given segment of the spring, the segment begins to compress, and
as it leaves, the segment relaxes back to equilibrium.  Waves across the surface of water
are a combination of longitudinal and transverse forms.

transverse traveling wave longitudinal traveling wave
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Describing waves with math: wave functions
On the MCAT, it is unlikely that you will have to perform any complicated mathematical
operations in which you are asked to generate the wave function describing this or that
wave.  It's a good idea, however, to understand how wave functions work to describe waves
in case the test-makers give you one to interpret.  Also, as is often the case, an under-
standing of how math can be used to describe a certain phenomenon will increase your
degree of understanding.

At right we have represented a
transverse pulse traveling along our
length of rope within a cartesian
coordinate system.  The x axis cor-
responds to position along the rope,
and the y axis corresponds to the
rope's vertical displacement.  We
have three graphs, corresponding to
three successive moments in time,
t1, t2, and t3.  The vertical displace-
ment of a point along the rope can
be thought of as a function of both
position in the medium and time.
The general expression for a wave
traveling to the right is:

y = f(x - vt)
where v is the wave speed.  A wave
travelling to the left would have the
function:

y = f(x + vt)
Harmonic waves
A harmonic wave is one in which the wave fo rm exhibits a periodic nature.  Such waves are
represented by the sine curve.  Thinking back to our ripples on a pool of wa t e r, examine the
sine wave below.  Imagine the wave fo rm moving to the right and think about the particles of
water moving up and down and then up again as the wave passes (It must be admitted that
the actual movements of the water particles are more complicated,  the particle motion being
a combination of tra n s verse and longitudinal fo rm s ) .
The points where the distur-
bance is greatest in the upwa r d
direction are called c r e s t s; where
the disturbance is greatest dow n-
ward, we have t r o u g h s.    
Where the water is at norm a l
l evel are n o d e s, which can be
either ascending or d e s c e n d i n g,
depending on whether the wa t e r
is rising or falling at that point.
The ve rtical distance from a
node to a crest or to a trough is
called the amplitude of the wave.
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The wavelength and frequency of harmonic waves

Harmonic waves are periodic, meaning the wave form repeats itself.  The distance within a
harmonic wave between successive points where the nature of the disturbance is identical
(crest to crest or trough to trough, for example) is called the wavelength (λ), measured in
meters.   The number of crests which pass a certain point in a second is called the fre-
quency (f), measured in Hz or sec-1.  The wave speed (v) is the product of the wavelength
and frequency:

v = λf
The frequency (f) tells you how many crests pass by a given point in one second.  The reci-
procal of this quantity tells you how many seconds it takes for one wavelength to pass by
(how many seconds per cycle), which is called the period (T), measured in seconds.

You can describe a harmonic wave in terms which more directly reflect the sinusoidal
nature of the wave form.  Each wavelength corresponds to progress from 0 to 2π radians to
complete a cycle (At 2π radians, the wave begins a new cycle).  The quantity called the
angular frequency (ω), which is measured in radians per second (rad sec-1), tells how
quickly a wave oscillates in terms of angular progress.  The harmonic wave in the illustra-
tion at the top of the page has a frequency of 3 Hz, or 3 cycles per second.  In one second,
6π radians of angular progress will accrue.  The angular frequency is thus 6π radians per
second (3 cycles per second multiplied by 2π radians per cycle).  

Another useful quantity is called the w ave number (k), which is measured in radians per
meter (rad m1).  Imagine holding the harmonic wave still in time.  If you break the wave up
into meter segments, the amount of angular progress in one meter is the wave number.
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The harmonic wave function

The wave function for a harmonic wave is given by:

Unpacking the formula might help us understand  how such a function works to represent a
harmonic wave.  First of all, the quantity A is called the amplitude of the wave.  When the
sine equals 1 or -1, the wave will have a magnitude of displacement equal to this quantity
A.  At such moments in time and space, the wave will be passing through a crest or a
trough. 

Using our imagination, let's investigate the expression within the sine function.  We find two
terms.  One term is a function of horizontal displacement, the other a function of time.
Holding time constant in your imagination, vary  the displacement, x, in increments of one
wavelength.  As you do so, examine the equation and notice that the addition of one wave-
length will move the wave 2π radians into the next cycle.  Therefore, the coefficient in the
displacement term, which depends on the wavelength, (2π/λ or k) specifies the shape of
the wave in space, whether the wave looks compressed or stretched out.  A large wave-
length means that there will be a large distance along the x-axis for each cycle.  

Next, in your imagination, examine the equation and hold the displacement constant at a
single point and move time forward in increments of the period, T (remembering that the
frequency, f, is equal to v/λ).  Each of these additions of one period takes 2π radians away
from the sum within the sine function.  Do you see how increasing the time by one period
brings the disturbance one cycle behind our point along the x-axis up to where we are?  A
high frequency, f, means that the wave will move many cycles forward in a small amount of
time. 

This type of mental exercise upon a physical formula, holding certain terms constant and
varying others to see how some phenomenon varies with the quantitative parameters that
go into describing it, develops the kind of sophisticated understanding and appreciation of
mathematical physics that can make crucial difference on the MCAT. Really it should get to
be a habit.  Our conclusion in this instance, with the harmonic wave function, should be
that while the displacement term describes the shape of the wave, the time term puts the
wave in motion. 

One final note: Sometimes the wave function will show the addition of a constant within the
sine function.  This term, φ, is called the phase constant, which is specified by the initial
conditions (we might not start timing at the beginning of a cycle, for example)    

   y = A sin 2π
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Sound waves
The tines of a tuning fo rk will vibrate with harmonic motion.  The interaction of the tines with
the fluid medium in which they are immersed (in this case, the air) produces a series of high
and low pressure regions called condensations and r a r e f a c t i o n s.  The mathematical
d e s c ription of a harmonic sound wave would be identical to that which we have descri b e d
e a rlier for harmonic waves in general, except that in this case we are describing the dis-
placement from equilibrium of air molecules in the hori zontal direction.  Sound waves are
not tra n s verse but l o n g i t u d i n a l.  As molecules of air are displaced, there will appear sec-
tions in which the air is compressed and sections in which the air is expanded.  90o out of
phase with the displacement wave is the pressure wave, which we have shown below:

The speed of sound waves
As a general rule, the speed of waves through a medium depends only on the properties of
the medium.  For example, the speed of a transverse wave along a stretched string is given
by:

In the fo rmula above, F is the tension on the string and µ is the mass per unit length.  A dis-
turbance occurs upon a section of string and the disturbance begins to propagate.  The time
it takes for a part i c u l a r, displaced segment to transmit the disturbance to the fo l l owing seg-
ment will be short if the restoring fo r c e, which depends upon the tension, F, is large.  Also, if
the inertia of the segment is large, which depends on µ, the time it takes to transmit the dis-
turbance will be long, because it will take more force to return the segment to equilibri u m. 

The same principles apply to the speed of sound, which is given by the formula:

Β is the bulk modulus of the medium, which will determine the restoring forces which
accompanies a deformation (condensation or rarefaction), and ρ is the equilibrium density
of the medium.  

The speed of sound through air at O oC is 331 m/s.
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The Doppler effect
There is a change in the apparent
frequency of sound whenever there
is relative motion between observer
and source.  This is called the
Doppler effect.  If the source and
observer are moving towards each
other, the observer hears the fre-
quency as higher than the frequency
of the source.  If the source and
observer are moving away from
each other, the sound appears to be
of lower frequency.  The general
equation for determining the appar-
ent frequency, f',  is as follows:

Notice that there is a choice of signs, governing whether to add or to subtract the speed of
the observer, v0, to the speed of sound, v, in the numerator, and also whether to subtract or
add the speed of the source, vs, to the speed of sound in the denominator.  Don't let this
confuse you.  Use the upper signs, which will increase the apparent frequency, if the
observer and source are moving toward each other, and use the lower signs if they are
moving apart.

Wave superposition
Interference describes the occurrence of waves occupying the same region of space and
combining to produce a resultant wave.  The amplitude of the resultant wave is the sum of
the amplitudes of the individual waves.  At positions where the displacements of the individ-
ual waves are in the same direction (both positive or both negative),  constructive inter-
ference occurs, and the two waves reinforce one another to produce a resultant wave of
greater amplitude than either alone.  At positions where the displacements of the individual
waves are in opposite directions, the waves act
to cancel each other out.  When this occurs it is
called destructive interference.  At right, we
have illustrated the destructive interference of
two transverse traveling waves of equal ampli-
tude but of opposite orientation.  Notice at the
position of overlap, it appears that the pulses
disappear momentarily.  What happens to the
energy during overlap?  We know that it is con-
served.  What form is it in?  The answer is that
all of the energy of the wave is in the form of
kinetic energy.  The direction of the transverse
motion of the string on either side of the resul-
tant of the two pulses is in opposite directions: 

  f = v ± v0

v vs
 f '



Standing waves in a fixed string
A harmonic wave moving on a stretched string fixed at both ends will be reflected upon
encountering either end.  The net result upon the string will be the superposition of two
harmonic waves moving in opposite directions.  This superposition creates a resultant
wave, called a standing wave, in which the amplitude is a function of horizontal position.
The resultant wave function is as follows (for the MCAT it is more important to understand
this than memorize):

The wave function predicts nodes, points with zero amplitude, when the following is true:

Since k = 2π/λ, the nodes in terms of the wavelength can be expressed (n = 1,2,3...):

Because the nodes are points along the string that have zero amplitude, it is natural for
nodes to be located at the fixed ends.  These natural ways for the string to vibrate are
called its normal modes.  The previous equation then becomes:

The first three normal modes are illustrated in the picture below right.  The wavelengths of
the normal modes may be expressed:

With the wave speed, v, we generate the expression for the frequencies of the normal
modes:

The frequency for n = 1 is called the fundamen-
tal frequency, which together with the other
terms in the series constitute a harmonic
series.   When an initial disturbance is intro-
duced, such as the occurrence of the collision
of a hammer upon a string of a piano, it doesn't
matter where upon the string the blow is struck.
Waves of other than the normal modes of
vibration will cancel themselves out by destruc-
tive interference, and the string will vibrate with
the frequencies described by its harmonic
series.  It will vibrate will all of the frequencies
in the harmonic series at once, a resultant
wave being created by superposition of the
normal mode wave forms.  We call the second
harmonic the first overtone.  The third harmon-
ic is the second overtone, etc..
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Standing waves in air columns
Columns of air, such as those found in in a pipe organ, can be used to create standing
sound waves.  The description of the standing wave's harmonic series depends upon
whether the pipe is open at both ends or closed at one end.  

A pipe open at both ends:
A sound wave reflecting at the open end of the air
column is encountering outside air.  The outside air
has "give" to it (the acceptance and return of a
pulse takes a full cycle), so the reflected wave will
be in phase with the incident wave.  This means
that the open end of an air column is a displace-
ment crest or trough (a pressure node) in the
standing wave.  The natural frequencies of vibration
have the same description as those of a stretched
string of the same length (except, of course, that
the wave speeds, v, are differently determined):

A pipe closed at one end:
When a sound wave is incident upon a solid sur-
face with little "give" to it, it reflects 180o out of
phase.  The reaction force exerted by the wall
returns the wave upon itself with equal and oppo-
site displacement.  The net result by superposition
is that a displacement node exists at the closed
end.  From the previous discussion, we know that a
displacement crest or trough (antinode) will exist at
the open end.  Therefore, the fundamental frequen-
cy of a pipe closed at one end will reflect a wave-
length four times longer than the pipe:

Resonance
Resonance between an oscillatory system and a driving force exists when the frequency of
the driving force corresponds to the frequency of the system.  A child pushing another on a
swing  will work naturally to achieve resonance to swing their friend as high as possible.  

One type of resonance known as sympathetic vibration can occur between two identical
tuning forks set side by side.  When one is struck, it sends out sound waves that corre-
spond to the natural frequency of vibration of the other.  The varying pressure of the sound
waves exerts a resonant force upon the other tuning fork, and after a time, it too will begin
to generate sound waves.

The term resonance is also used to describe a situation where direct sound waves are rein-
forced by reflected sound waves, such as occurs when the sound from the strings of a gui-
tar are reinforced by the (complex) air column in the body of the instrument.
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Beats
When two tuning forks of slightly different frequencies are played together, at a given posi-
tion in space, the sound waves are periodically in phase, resulting in constructive interfer-
ence, and then out of phase, resulting in destructive interference. A regular series of
sounds of pulsating intensity are heard, called beats.   Examine the illustration below to
see how this occurs.

The number of beats one hears per second, the beat frequency, is simply the difference
between the frequencies of the vibrating bodies:

Suppose in the illustration above the waves achieved in one second the total horizontal dis-
placement represented by the length of the graph.  In that case their frequencies would
respectively be about 12 and 9 cycles per second.  Can you see the three beats in the
graph representing their superposition?

The intensity of sound,  the decibel scale
The intensity of a sound wave is a measure of the amount of energy in unit time moving
through a unit area, or, in other words, the power flowing through a unit area.  The loud-
ness of sound is a subjective measure that reflects its intensity.  However, the way we per-
ceive gradations of loudness is closer to the logarithm of the intensity.  In other words, we
would perceive a sound ten or a hundred or a thousand times as intense as only an arith-
metic (1,2,3), not a geometric, increase.  A scale of measurement was developed, called
the decibel scale, to bring measurements of intensity into line with our perceptions of loud-
ness.  The intensity level, β, measured in decibels can be found with the following formula:

I is the intensity of our sound wave, measured in W/m2.  I0 is the reference intensity (10-12

W/m2), the threshold of hearing.
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