Important Right Triangles for Vector Operations

Remember:

$$
\sqrt{2} \approx 1.4 \quad \sqrt{3} \approx 1.7
$$

"sin" is opposite projection; "cos" is adjacent projection

$$
\sin \left(45^{\circ}\right)=\cos \left(45^{\circ}\right)=\frac{1}{\sqrt{2}} \approx 0.71
$$

This means that for any ray at a 45° angle, the two projections are equal to each other and are a bit more than seven tenths the length of the ray.
$\sin \left(30^{\circ}\right)=\frac{1}{2}$ $\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2} \approx 0.87$
$\cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2} \approx 0.87$

For a ray at a 30° angle, the opposite projection is half the length of the ray. The adjacent projection is nearly nine tenths as long. For a 60° angle, this is reversed.

